
Dynamic Publish/Subscribe to Meet

Subscriber-Defined Delay and Bandwidth
Constraints�

Muhammad Adnan Tariq, Gerald G. Koch, Boris Koldehofe,
Imran Khan, and Kurt Rothermel

IPVS - Distributed Systems, University of Stuttgart
{firstname.lastname}@ipvs.uni-stuttgart.de

Abstract. Current distributed publish/subscribe systems assume that
all participants have similar QoS requirements and equally contribute to
the system’s resources. However, in many real-world applications, the mes-
sage delay tolerance of individual peers may differ widely. Disseminating
messages according to individual delay requirements not only allows for
the satisfaction of user-specific needs but also significantly improves the
utilization of the resources in a publish/subscribe system. In this paper,
we propose a peer-to-peer-based approach to satisfy the individual de-
lay requirements of subscribers in the presence of bandwidth constraints.
Our approach allows subscribers to dynamically adjust the granularity
of their subscriptions according to their bandwidth constraints and de-
lay requirements. Subscribers maintain the publish/subscribe overlay in
a decentralized manner by establishing connections to peers that provide
messages meeting exactly their subscription granularity and complying to
their delay requirements. Evaluations show that for practical workloads,
the proposed system scales up to a large number of subscribers and per-
forms robustly in a very dynamic setting.

1 Introduction

Publish/subscribe is an important many-to-many communication paradigm for
applications with loosely coupled entities where providers of information publish
events while recipients subscribe to them. The advantage of this paradigm is the
decoupling of publishers and subscribers : Events can be published by providers
without knowledge on the set of relevant recipients, while recipients express
their interest in certain information without the need to know the actual set of
its providers.

The evolution of publish/subscribe has followed two main objectives, namely
an increased decentralization and an increased orientation on the participants’
specific needs. Former static broker-based architectures were overcome by de-
centralized systems where publishers and subscribers contribute as peers to the
� This work was partially funded by the SpoVNet project of Baden-Wurttemberg

Stiftung gGmbH.

P.D’Ambra,M.Guarracino, andD.Talia (Eds.):Euro-Par 2010, Part I, LNCS6271, pp. 458–470, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Published in P.D’Ambra, M.Guarracino, and D.Talia (Eds.): Euro-Par2010,
LNCS 6271, pp. 458-470, 2010.
© Springer-Verlag 2010
The original publication is available at www.springerlink.com:
http://www.springerlink.com/content/10.1007/978-3-642-15277-1_44

Dynamic Publish/Subscribe to Meet Subscriber-Defined Constraints 459

dynamic maintenance of the publish/subscribe system and where they perform
the dissemination of events collectively. Specific needs of subscribers were met by
the transition from topic-based and channel-based publish/subscribe to content-
based publish/subscribe. Its expressive way to subscribe allows the definition of
subscriber-specific restrictions on the event message content.

There is still potential for the adaptation of publish/subscribe to peer-specific
needs. For instance, many current systems assume that all subscribers expect the
same quality of service (QoS) for their requested events. In fact, for many real-
world settings, events are of different importance to individual subscribers which
can therefore subscribe with different QoS requirements. Consider, for example,
meteorological sensor information such as temperature and wind fields. The data
itself is relevant for a large number of application entities such as news agen-
cies, traffic monitoring, energy management, and rescue services. However, while
local rescue services need to react fast and cannot tolerate large transmission de-
lays, other recipients like a weather forecast service which has a large prediction
window do not have that strict delay requirements. Accounting for individual
QoS requirements is promising to better utilize the system’s resources. Again,
resources such as bandwidth should be considered peer-specific constraints for
the maintenance of the system rather than system constants.

Considering peer-specific contributions, needs and constraints in publish/sub-
scribe systems is severely complicated by its inherent decoupling. Therefore, in
literature, only few approaches have addressed QoS for publish/subscribe. So-
lutions supporting message delay bounds either assume static topologies [20]
or rely on complex management protocols such as advertisement and subscrip-
tion forwarding to manage end-to-end state information with respect to each
publisher [6,17] and therefore constrain the system’s scalability. Peer-specific re-
source contribution and its inter-dependencies to user-specific delay requirements
have not been discussed yet in literature.

In this paper, we present a broker-less content-based publish/subscribe system
which satisfies the peers’ individual message delay requirements and supports
system stability by accounting for resources contributed by individual peers.
Subscribers arrange in an overlay so that subscribers with tight delay require-
ments are served first and then forward messages to peers with lesser require-
ments. Peers are motivated to contribute some of their bandwidth on receiving
and forwarding events which do not meet their own subscriptions (false posi-
tives) in exchange for an increased opportunity to satisfy their individual delay
requirements. Therefore, peers with tight delay requirements also significantly
contribute to the stability of the publish/subscribe system, while they are still
in control of their individual permissible ratio of false positives and thus can
consider their bandwidth constraints. The evaluations demonstrate the viability
of the proposed system under practical workloads and dynamic settings.

2 System Model and Problem Formulation

We consider a broker-less content-based publish/subscribe system consisting of
an unbounded set of peers. Peers leave and join the system at arbitrary time, and

460 M.A. Tariq et al.

they can fail temporarily or permanently. The peers act as publishers and/or sub-
scribers which connect in an overlay and forward events to relevant subscribers.
The set of overlay connections of a peer s can be classified into incoming con-
nections Fin(s) and outgoing connections Fout(s). We support event forwarding
using an out-degree constraint m. It obliges peer s to be ready to forward re-
ceived messages up to m times (Fout(s) ≤ m). The rate R(s) of events received
over connections in Fin(s) is therefore constrained: it must not consume more
than a fraction B(s)

m+1 of the overall bandwidth B(s) provided by the access link
that connects s with the physical network.

The basis for all events and subscriptions is the event space denoted by
Ω. It is composed of a global ordered set of d distinct attributes (Ai): Ω =
{A1, A2, . . . , Ad}. Each attribute Ai is characterized by a unique name, its data
type and its domain. The data type can be any ordered type such as integer,
floating point and character strings. The domain describes the range [Li, Ui] of
possible attribute values.

The relations between events, subscriptions and advertisements can be demon-
strated by modelling Ω geometrically as a d-dimensional space so that each di-
mension represents an attribute. A publisher’s advertisement is a sub-space of
that space, and a published event is a single point ω in the space. A subscrip-
tion is a hyper-rectangle in Ω. An event is matched by a subscription, iff the
point ω defined by the event is located within the hyper-rectangle defined by
the subscription. A subscription sub1 is covered by a subscription sub2, iff the
hyper-rectangle of sub1 is enclosed in the hyper-rectangle of sub2.

Apart from that, we allow a subscriber s to specify the delay Δ(s) that it is
willing to tolerate when receiving events from any of its relevant publishers.

In the publish/subscribe system described above, a peer clearly has two con-
cerns. The first is to receive all relevant messages in compliance with its delay
requirements. The second is, for the sake of saving bandwidth, to receive and
forward only messages that exactly match the peer’s subscription.

More precisely, let S be a set of subscribers and PS the set of publishers that
publish events matching the subscriptions of S. E denotes the set of all overlay
links and path(p, s) = {(p, i1), (i1, i2), ..., (im, s)} ⊆ E defines the set of overlay
links on the path from a publisher p ∈ PS over intermediate nodes ij to a sub-
scriber s ∈ S. The delay on this path is defined as D(p, s) =

∑
e∈E:e∈path(p,s) d(e)

where d(e) denotes the link delay on a link e ∈ E. The objective is to maintain
the publish/subscribe overlay network in the presence of dynamic sets of pub-
lishers PS and subscribers S, so that

1. the delay constraints of a large number of subscribers are satisfied w.r.t.
the sets of their relevant publishers (ideally, in the presence of sufficient
resources, ∀s ∈ S, ∀p ∈ PS : D(p, s) ≤ Δ(s)), and

2. each subscriber can dynamically adjust the rate of false positives it receives
so that its bandwidth constraints are not violated, i.e. B(s)

m+1 ≥ R(s).

Our approach can work with any monotonically increasing delay metric. How-
ever, for simplicity, in our algorithm description we use the hop count as delay
metric, i.e. D(p, s) = |{e ∈ E|e ∈ path(p, s)}|.

Dynamic Publish/Subscribe to Meet Subscriber-Defined Constraints 461

3 Approach Overview

Meeting the objectives presented in Section 2 amounts to finding a good trade-
off between two contradicting goals: to minimise resource usage by avoiding
false positives (i.e., a subscriber s receives and therefore forwards only messages
that match its own subscription), and to ensure scalability by balancing the
contribution of the peers according to their available resources.

Fulfilling the first goal affects the scalability of the overall system especially
in the presence of out-degree constraints. In the content-based model, subscrip-
tions often intersect with each other rather than being in a containment relation-
ship. Hence, the complete removal of false positives may require subscribers to
maintain large number of incoming connections in order to cover their subscrip-
tions [15]. Therefore, false positives cannot be completely avoided and peers need
to contribute resource in terms of false positives to ensure scalability. However,
allowing individual peers to induce false positives by arbitrarily coarsening their
subscriptions without any regularity is unrewarding due to the fact that coarser
subscriptions may still intersect instead of being in a containment relationship.

We therefore propose to coarsen subscriptions systematically by distinguish-
ing between two levels of subscriptions: user-level and peer-level, as shown in
Figure 1. The user-level subscription represents the original subscription as de-
fined by the application. The peer-level subscription is an approximation of the
user level subscription and defines which events a peer actually receives.

The peer-level subscription is created by spatial indexing [9,14]. The event
space is divided into regular sub-spaces which serve as enclosing approxima-
tions for user-level subscriptions. The sub-spaces are created by recursive binary
decomposition of the event space Ω. The decomposition procedure divides the
domain of one dimension after the other and recursively starts over in the created
sub-spaces. Figure 2 visualizes the advancing decomposition. Sub-spaces can be
identified by dz-expressions. A dz-expression is a bit-string of “0”s and “1”s,
which is empty (ε) for Ω. Each time a sub-space is divided, its dz-expression is
inherited as prefix for the dz-expressions of the newly created sub-spaces.

The peer-level subscription of a peer p can be composed of several sub-spaces
and is therefore represented by a set of dz-expressions denoted by DZ(p) with
DZ(p) = {dzi | i ≥ 1}. For instance, in Figure 2, the accurate mapping of
sub1 = {humidity = [0, 25] ∧ Temp = [0, 100]} requires two sub-spaces in its
peer-level subscription. The mapping is sub1 �−→ {000, 010}.

If the mapping between the subscriptions at user and peer level is identical,
the peer will only receive events matching its user-level subscription. In general,
however, a peer can coarsen its peer-level subscription in a regular manner so
that additional events can occupy a share of its bandwidth. For example, sub1

in Figure 2 can be coarsened by mapping it to the sub-space 0, i.e. sub1 �−→ {0}.
The regularity of sub-spaces created by spatial indexing is advantageous due

to the fact that overlapping sub-spaces are always in a containment relationship,
which can be directly mapped to the overlay structure as discussed in Section 4.
Additionally, subscriptions can be coarsened or refined in a regular manner.
This lesser degree of freedom in the selection of false positives also helps in the

462 M.A. Tariq et al.

Application

Peer level subscription

Subscribe
Advertise
Publish

Notify

Overlay Protocol
Delay constraints
Containment relation

Trigger
Delay violation
Bandwidth violation

Adjust
accuracy

User level subscription

FilteringMapping

Fig. 1. Architecture

d1= humidity

d 2
=T
em

p

L2 =0 0 100
0

100

0 1

0 100
0

100

01

00 10

11

50

50

0
0

100

010

50

50

000

011

001 100 101

110 111

25 75

d1= humidity

d1= humidity d1= humidity

d 2
=T
em

p

d 2
=T
em

p

d 2
=T
em

p

100

U1 =100L1 =0

U2=100

50

Sub1 ={ humidity = [0,25], Temp= [0,100] }

Fig. 2. Spatial indexing

anticipated bandwidth estimation of the sub-spaces that are considered for use
in coarser subscription as detailed in Section 5.

4 Overlay Protocol

Subscribers maintain the overlay in a decentralized manner by connecting and
disconnecting other peers. In particular, subscribers satisfy their peer-level sub-
scriptions and delay requirements by connecting to subscribers or publishers
that have covering subscriptions and tighter delay requirements. Thereby, sub-
scribers just rely on the subscription and the delay constraints of the peers they
are connecting to, and on the fact that these in turn connect to suitable peers.

For the satisfaction of its subscription, a peer p needs to discover a suitable
parent for each of its dzi in DZ(p). Furthermore, dynamic conditions such as
churn, failures and changes in the delay requirements may require a previously
suitable parent to be replaced. Therefore, each subscriber maintains a peer view
pView1 that caches information about peers which are relevant because they
have covering subscriptions.

Overlay maintenance: Periodically, each peer p runs the connectionManage-
ment procedure (cf. Algorithm 1, lines 1-6) to check whether each dzi in DZ(p)
is covered either by the subscription of a subscriber or by all of the relevant pub-
lishers in Fin(p).2 If any dzi is not covered, the findBestParent routine selects a
suitable parent from pV iew. Peer p sends a connection request to this potential
parent once it is selected.
Connection request: Upon reception of a connection (CONNECT) request from
a peer p, the potential parent q will normally acknowledge the connection, but
it will reject the request if Δ(p) > Δ(q) does not hold. In this case, q sends a
hint about the most suitable parent for p according to q’s knowledge.

1 In our implementation we modified an epidemic protocol for maintaining pV iew.
2 The set of relevant publishers is maintained similar to pV iew.

Dynamic Publish/Subscribe to Meet Subscriber-Defined Constraints 463

Algorithm 1. Publish/subscribe overlay maintenance
1: procedure connectionManagement do
2: while true do
3: if ∃dzi ∈ DZ(p)|dzi is not covered then
4: parent = findBestParent(pV iew, dzi)
5: pV iew = pV iew − parent
6: trigger Send(CONNECT, p, parent, dzi , Δ(p))

7: upon event Receive(CONNECT, p, q, dz(p), Δ(q)) do
8: if Δ(p) > Δ(q) then
9: Fout(q) = Fout(q) ∪ p
10: if |Fout(q)| > m then
11: peer[] = peersToDisconnect()
12: for all t ∈ peer do
13: parent = findBestParent(pV iew ∪ Fout(q), dz(t))
14: trigger Send(DISCONNECT, t)
15: trigger Send(POTENTIALPARENT, t , parent)
16: if p /∈ peer then
17: trigger Send(ACK,q)
18: else // Δ(p) ≤ Δ(q)
19: parent = findBestParent(pV iew ∪ Fin(q), dz(p))
20: trigger Send(POTENTIALPARENT, p, parent)

21: upon event Receive(ACK, q) do
22: Fin(p) = Fin(p) ∪ q
23: iCon = {dz(ai) | ai ∈ Fin(p) ∧Δ(ai) �= 0}
24: // DZ(p) should be covered exactly once, therefore remove unnecessary parents
25: for all dz(ai) ∈ Fin(p) do
26: for all dz(aj) ∈ iCon : j �= i do
27: if dz(ai) ≺ dz(aj) then // dz(ai) is covered by dz(aj)
28: iCon = iCon− dz(ai)
29: Fin(p) = Fin(p)− ai
30: trigger Send(DISCONNECT, ai)

Accepting peer p as a child may violate the out-degree constraints of the
peer q. In this case, the peersToDisconnect routine prepares the disconnection
from children with a highly selective subscriptions and a large Δ. If p is chosen
for disconnection, it will receive a hint (POTENTIALPARENT) message instead
of a connection acknowledgement.

Upon reception of a hint (POTENTIALPARENT) message, a peer will add
the hint to its pView and consider it as a potential parent in its next iteration
of the connectionManagement procedure.
Connection acknowledgement: Upon reception of an acknowledgement (ACK)
message, a peer p ensures that its peer-level subscription is covered exactly once
by parent subscribers. This ensures that p’s bandwidth is not wasted in receiving
duplicate events. For sub-spaces of p’s subscription that cannot be covered by
parent subscribers, coverage must be accomplished by connecting to all relevant
publishers. Thus, for each of such sub-spaces that are only covered by one or
more publishers, p continues to search for relevant publishers or subscribers.

Placement of publishers: Similar to subscriptions, an advertisement of a pub-
lisher is represented by a set of dz-expressions (DZ). This allows the automatic
discovery and inclusion of the publishers in the overlay network, as a result of
connection requests (CONNECT) from subscribers. Publishers maintain their
Fout connections similar to subscribers (cf. Algorithm 1, lines 9-17).

464 M.A. Tariq et al.

5 Triggers for Changes in Accuracy

Until now we have described the organization and maintenance of the pub-
lish/subscribe overlay in the presence of subscriber-specified delay requirements.
Nevertheless, we need additional mechanisms to ensure the scalability of the
scheme. Sometimes a peer cannot find any potential parent to satisfy its delay
constraints. In Figure 3(a), for instance, subscriber S5 has a rather selective
subscription and tight delay requirements. If the publisher P1 cannot accom-
modate more child subscribers, then S5 can only connect to S2 according to
Algorithm 1. However, doing so violates the delay constraints of S5. In this case
S5 can coarsen its peer-level subscription according to its bandwidth constraints
in order to be placed between P1 and S2. This is possible because the overlay
maintenance strategy places subscribers with less selective subscriptions higher
in the dissemination graph (cf. Algorithm 1, lines 7-17). Therefore, subscribers
can improve the probability to satisfy their delay requirements by agreeing to a
coarser subscription as shown in Figure 3(b).

Similarly, if changes in the event rate violate the bandwidth constraints, a
subscriber refines its subscription accordingly. In this case, however, there will
be no change in the set of existing parents as the new subscription is covered by
the previous subscription (cf. Algorithm 2, lines 4-6).

In the following sections, we describe the mechanisms to adjust the accuracy of
the mapping between user and peer level subscriptions according to subscriber-
specific bandwidth constraints.

5.1 Accuracy of Subscription Mapping

A subscriber can reduce the accuracy of the peer-level subscription by using
a coarser mapping c�−→ from the user-level subscription sub to a smaller set

S5

=3
DZ={0}

=1
DZ={1,00}

=5
DZ={100}

=2
DZ={1}

=1
DZ={01}

S2 S1

S3 S4

=0
DZ={ }P1 P2

=0
DZ={11}

S5

=3
DZ={0}

=1
DZ={1,00}

=5
DZ={100}

=2
DZ={1}

=1
DZ={0}

S2 S1

S3 S4

=0
DZ={ }P1 P2

=0
DZ={11}

(a) (b)

Fig. 3. Example Scenario with m = 2

0 100
0

100
0101

50

50

25 75

Sub2 ={ humidity = [0,100],
Temp= [0,25] }

d1= humidity

d
2
=
Te
m
p

00 10

0000

Possible Internal representations

Subscription

Decomposed Event Space

0100

0111

0110

1101

1100

1111

1110

0001 0011 1001 1011

0000 0010 1000 1010
25

75

0010 1000 1010

re
fi
n
e
m
e
n
t

DZ+1

DZC

DZ 1

Fig. 4. Subscriber-defined Accuracy

Algorithm 2. Triggers for change in accuracy
1: upon event TimeOut do
2: if ∃dzi ∈ DZ(p)|dzi is not covered then
3: reduce accuracy of peer-level subscription by coarsening

4: upon event BandwidthViolated do
5: increase accuracy of peer-level subscription accordingly
6: remove subscribers in Fout(p) which are not covered by the new DZ(p).

Dynamic Publish/Subscribe to Meet Subscriber-Defined Constraints 465

of coarser dz-expressions DZC . Reduced accuracy causes false positives and
increases bandwidth usage. Therefore, a condition for selecting a c�−→ mapping
on peer s is that the reduction of accuracy does not violate the peer’s bandwidth
constraint B(s). The subscriber can ensure this by iteratively selecting another
coarse mapping, thereby refining or coarsening individual dz-expressions and
thus controlling the overall rate of received events.

The bandwidth usage induced by each dz-expression depends on the rate of
events matched by the expression. Therefore, for each sub-space represented by
a dz-expression in DZC , the subscriber continuously studies the event rates in
the sub-space that is divided once less (DZ−1) and in the sub-spaces that are
divided once more (DZ+1). The latter can be calculated by counting the received
messages, while the event rate in the coarser sub-space is estimated by means
of statistical aggregation [11]. The estimation of the event rate in the coarser
sub-space relies on the measurements of other subscribers that are currently
subscribed to the coarser sub-space or a part of it. The measurements appear in
the messages of the protocol used to maintain pV iew (Section 4).

Figure 4 shows the possible mappings from a user-level subscription. If the
subscription is currently mapped to DZC = {00, 10} then the subscriber keeps
track of the event rates in the sub-spaces DZ−1 = {ε} and DZ+1 = {0000,
0010, 1000, 1010}. If there is a high rate of false positives in a sub-space of the
current peer-level subscription, the subscriber will drop it and select the relevant
of the finer sub-spaces from DZ+1 instead. Similarly, the subscriber can select
one sub-space from DZ−1 instead of multiple previous enclosed sub-spaces and
receive additional false positives. If the event rate and the subscriptions in the
system remain constant, this strategy will allow the subscriber to converge to a
state where its dz-expressions no longer need to be adjusted.

5.2 Optimized Spatial Indexing

For an event space with a large set of attributes, the number of dz-expressions
for an accurate subscription representation can be very large. As described in
Section 5.1, a coarse subscription mapping reduces the number of dz-expressions.
However, it induces false positives and hence its applicability depends on the
bandwidth constraints of the subscriber.

A simple modification in the representation of dz-expressions can reduce their
number without changing their accuracy. A dz-expression is redefined to include
the wild-card ∗ which stands for “0 and 1”. Two dz-expressions that differ in
only one place can be combined by replacing this place by “∗”. For example, the
subscription in Figure 4 can be represented by one dz-expression “∗0∗0”.

Dz-expressions of that form are created by a modified spatial indexing mech-
anism (Section 3). The decomposition procedure works mainly as before. Only
if the subscription covers the complete domain of the dimension to be divided,
then instead of creating two dz-expression for the smaller sub-spaces (ending
with 0 and 1), ∗ is added to the dz-expression.

The containment relationship defined on dz-expressions as well as the sub-
scription mapping and bandwidth estimation mechanisms work with the

466 M.A. Tariq et al.

modified technique. Furthermore, the modification allows subscribers to define
constraints only on a subset of attributes in the event space.

6 Evaluation

In this section, we evaluate the performance of the presented algorithms accord-
ing to the following criteria: i) convergence to subscription and delay constraint
satisfaction, ii) control overhead, iii) adaptability to dynamic conditions, iv) scal-
ability in terms of number of peers and attributes, and v) effect of bandwidth
consumption on the satisfaction of subscribers.

Experimental Setup: Simulations are performed using PeerSim [12]. Each
peer relies on Gossip-based peer sampling service [13] to maintain its partial
view (pV iew) of 5% other peers in the system. Unless otherwise stated, all the
simulations are performed for n = 1, 024 peers. The out-degree constraints of
the peers are chosen as m = log2(n). The event space has up to 10 different
attributes. The data type of each attribute is Integer, and the domain of each
attribute is the range [1, 128]. We evaluated the system performance under uni-
form (W1) and skewed (W2) subscription workloads; and with a uniform event
distribution. Skew is simulated by twenty randomly chosen hot spots in the
event space, around which subscriptions are generated using the widely used
80%-20% Zipfian distribution. We use the following performance metrics in our
evaluations:

1) Percentage of converged peers : The fraction of peers out of the total pop-
ulation which have found a suitable set of parents that cover their subscription.

2) Percentage of notified peers : The fraction of peers which are receiving events
from all the relevant publishers without violating their delay constraints.

3) Control Messages : The control overhead in terms of number of connection
request messages that a peer sent before finding its appropriate set of parents.

4) Construction time: The time needed to complete the construction of the
overlay topology.

Convergence: In this experiment, moderate delay requirements are assigned
to the peers such that convergence can be achieved. Figures 5(a)-(b) show the
construction time for the overlay topology. For all of the workloads, the per-
centage of notified peers is always less than that of converged peers until 100%
convergence is achieved. The reason is that the peers opportunistically connect
to other peers in order to cover their subscriptions and satisfy their delay con-
straints. Therefore, during the evolution of the overlay topology, many separate
isolated groups of peers may exist. Some of these groups may not have found a
connection to the relevant publishers. Eventually, all the groups converge to one
overlay topology.

The overlay construction time for workload W2 is higher due to the fact that
the subscription distribution is highly skewed with very little overlap between the
subscriptions of peers assigned to different hot-spots. This results in subscribers
with coarser subscriptions occupying all the places near the publishers, forward-
ing events that only correspond to a portion of the event space. Therefore, the

Dynamic Publish/Subscribe to Meet Subscriber-Defined Constraints 467

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

P
e
r
c
e
n
t
a
g
e

o
f

P
e
e
r
s

Time
 (a) - Workload 1

Converged Peers
Notified Peers

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

P
e
r
c
e
n
t
a
g
e

o
f

P
e
e
r
s

Time
 (b) - Workload 2

Converged Peers
Notified Peers 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 2 3 4 5 6 7 8 9 10111213

P
e
r
c
e
n
t
a
g
e

o
f

P
e
e
r
s

Control Messages
 (c)

Workload 1
Workload 2

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3

%

o
f

N
o
t
i
f
i
e
d

P
e
e
r
s

Churn Percentage
 (d) - Workload 1

Notified Peers
Converged Peers

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000

T
i
m
e

Number of Peers
 (e)

Workload 1
Workload 2

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 20 40 60 80 100 120

A
v
e
r
a
g
e

i
n
-
d
e
g
r
e
e

Average Number of
 Dz-expressions

 (f)

 0

 20

 40

 60

 80

 100

0 3.125 6.25 12.5 25 50

%

o
f

N
o
t
i
f
i
e
d

P
e
e
r
s

% of Allowed False Positives
 for each peer

 (g)

Moderate delay req
Tight delay req

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

3.125 6.25 12.5 25 50

%

o
f

F
a
l
s
e

P
o
s
i
t
i
v
e
s

i
n

t
h
e

s
y
s
t
e
m

% of Allowed False Positives
 for each peer

 (h)

Moderated delay req
Tight delay req

Fig. 5. Evaluations of the presented algorithms

subscribers with finer subscriptions (to uncovered portions of the event space)
have to increase their subscription to compete with subscribers with coarser
subscriptions. Figure 5(c) shows the control overhead incurred by the peers in
order to find suitable parents. It shows the percentage of the affected peers as a
function of the number of connection request messages sent by them.

Adaptability: This experiment evaluates the dynamic resilience of the system
in the presence of continuously joining and leaving subscribers. The percentage
of churn is relative to the total of all peers in the system. For instance, a churn of
2.5% means that in each time step, 25 on-line peers leave and the same number
of new peers with different subscriptions and delay requirements join the system.
Figure 5(d) shows the percentage of converged and notified peers for different
percentages of churn along with the standard deviation for W1. The reason for
the gradual degradation in the percentage of notified and converged peers is due
to the fact that a high churn rate increases the probability that peers placed near
the publishers leave the system, affecting the delay constraint satisfaction of all

468 M.A. Tariq et al.

their descendant subscribers. The evaluation results obtained from W2 shows
similar trend.
Scalability: First, we study the scalability with respect to the number of peers
in the system. In all the experiments the out-degree constraints are chosen as
log2(n) of the total number of peers n. Figure 5(e) shows that up to 5000 peers
the overlay construction time almost stays the same. Furthermore, the overlay
construction time for W2 is in general higher due to the fact that the subscrip-
tion distribution is skewed and some subscribers may need to increase their
subscriptions as discussed in the convergence evaluations.

Next, we study the effect of the number of attributes in the event space
on the system’s scalability. The number of dz-expressions needed for the ac-
curate representation of a user-level subscription generally increases with the
number of attributes. A peer maintains a suitable parent for each of its dz-
expressions. Therefore, we study the effect of an average increase in the number
of dz-expressions on the average in-degree for W1 as shown in Figure 5(f). The
averages are taken over all the peers in the system and the out-degree constraints
of the peers are kept constant during the experiment. The results show a slight
increase in the average in-degree with the number of dz-expressions, i.e., increas-
ing the average number of dz-expressions from 8 to 128 increases the average
in-degree by just 0.7 to 2.7.

Effect of bandwidth on the satisfaction of delay requirements: In this
experiment two scenarios are evaluated: one where the subscribers are assigned
moderate delay requirements (S1) and the other with tight delay requirements
(S2). In both the scenarios, delay requirements of all the subscribers cannot
be satisfied without inducing false positives. All the subscribers are assigned
the same bandwidth constraints, specified in terms of allowed false positives
as a percentage of the overall event rate. For example, 3.125% of allowed false
positives means that subscribers can increase their subscription till they are
receiving 3.125% of overall events in the system as false positives. Figure 5(g)
shows the percentage of notified peers for different percentages of allowed false
positives, and Figure 5(h) shows the actual percentage of false positives in the
system for the scenarios S1 and S2. In case of S1, only 73.7% of subscribers are
notified in the absence of false positives. However, allowing peers to receive up
to 12.5% of overall events as false positives increases the percentage of notified
peers by 26.3% to 100% with only 7.5% increase in the overall rate of false
positives in the system. In contrast, in scenario S2, even when the subscribers
are allowed to increase their false positives up to 50% of overall event rate,
the percentage of notified peers increases by only 8.3% to 70.2%. The reason
is that the delay requirements of subscribers in S2 are very tight and that it
is not possible to satisfy all of them. In this case, the unsatisfied subscribers
coarsen their subscriptions to get a better place in the overlay. However, as all
the subscribers have similar bandwidth constraints and there are limited places
to satisfy delay requirements, coarsening subscriptions does not give them any
competitive advantage. It just raises the overall rate of false positives.

Dynamic Publish/Subscribe to Meet Subscriber-Defined Constraints 469

7 Related Work

Over the last decade, many content-based publish/subscribe systems have been
proposed with scalability as the main design criterion [7,10,5,3]. In order to
achieve scalability, a large number of unnecessary events (false positives) are
clearly undesirable and should be avoided [15]. Many recent systems address scal-
ability by clustering the subscribers with similar interests [1,8]. Sub-2-Sub [19]
clusters subscribers with non-intersecting subscriptions into rings and completely
avoids false positives. However, even for a moderate number of subscribers, the
number of clusters may quickly grow to a very large number, limiting the scal-
ability of the approach [15]. Similarly, techniques from data mining have been
used to group subscriptions in a limited number of clusters [16], but this requires
central coordination. Apart from the stated drawbacks, existing approaches [2,4]
only focus on the overall reduction of false positives without taking into account
the heterogeneity of subscribers in terms of QoS requirements to better utilize
resources in a publish/subscribe system.

Only few publish/subscribe systems address issues related to QoS. IndiQoS [6]
addresses individual delay requirements, but it relies on subscription and adver-
tisement forwarding mechanisms to maintain end-to-end delay bounds and to
reduce false positives. These mechanisms introduce an extra overhead and have
a restricted efficiency with widely dispersed subscribers [15]. Some of the prob-
lems stated above are addressed by the system presented in [17] which clusters
subscribers into groups in order to reduce false positives. However, within each
group, subscription and advertisement forwarding is used to maintain end-to-end
delay bounds. The solution presented in the paper at hand goes a step forward,
as it avoids advertisement flooding and takes into account the inter-dependencies
between peer-specific resource contribution and delay requirements.

8 Conclusion

In this paper we have shown how the individual delay requirements of a large
dynamic set of subscribers in a content-based publish/subscribe system can be
satisfied without violating their bandwidth constraints. In particular, subscribers
are given the flexibility to define their permissible rate of false positives ac-
cording to their individual bandwidth constraints. Additionally, we propose a
subscriber-driven decentralized algorithm to connect publishers and subscribers
in an overlay network according to their delay requirements so that subscribers
with tight delay requirements are located closer to the relevant publishers. The
evaluation shows that the proposed algorithm converges to the satisfaction of
subscriber-specific delay constraints even in a very dynamic setting. The ideas
presented in this paper are applied to support a peer-to-peer based gaming ap-
plication in the SpoVNet project where link delay information is provided by a
cross-layer information framework [18].

470 M.A. Tariq et al.

References

1. Anceaume, E., Gradinariu, M., Datta, A.K., Simon, G., Virgillito, A.: A Semantic
Overlay for Self-Peer-to-Peer Publish/Subscribe. In: ICDCS (2006)

2. Baldoni, R., Beraldi, R., Querzoni, L., Virgillito, A.: Efficient Publish/Subscribe
Through a Self-Organizing Broker Overlay and its Application to SIENA. The
Computer Journal (2007)

3. Bhola, S., Strom, R.E., Bagchi, S., Zhao, Y., Auerbach, J.S.: Exactly-once Deliv-
ery in a Content-based Publish-Subscribe System. In: Intl. Conf. on Dependable
Systems and Networks (2002)

4. Bianchi, S., Datta, A., Felber, P., Gradinariu, M.: Stabilizing Peer-to-Peer Spatial
Filters. In: ICDCS (2007)

5. Briones, J.A., Koldehofe, B., Rothermel, K.: Spine: Adaptive publish/subscribe for
wireless mesh networks. Studia Informatika Universalis 7 (2009)

6. Carvalho, N., Araujo, F., Rodrigues, L.: Scalable QoS-Based Event Routing in
Publish-Subscribe Systems. In: Intl. Symposium on Network Computing and Ap-
plications (2005)

7. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and evaluation of a wide-area
event notification service. ACM Trans. Comput. Syst. (2001)

8. Chand, R., Felber, P.: Semantic Peer-to-Peer Overlays for Publish/Subscribe Net-
works. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp.
1194–1204. Springer, Heidelberg (2005)

9. Gaede, V., Günther, O.: Multidimensional access methods. ACM Comput. Surv
(1998)

10. Gupta, A., Sahin, O.D., Agrawal, D., Abbadi, A.E.: Meghdoot: Content-Based
Publish/Subscribe over P2P Networks. In: Intl. conf. on Middleware (2004)

11. Jelasity, M., Kowalczyk, W., van Steen, M.: An approach to massively distributed
aggregate computing on peer-to-peer networks. In: Workshop on Parallel, Dis-
tributed and Network-Based Processing (2004)

12. Jelasity, M., Montresor, A., Jesi, G.P., Voulgaris, S.: PeerSim: A Peer-to-Peer Sim-
ulator, http://peersim.sourceforge.net/

13. Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.-M., van Steen, M.: Gossip-
based peer sampling. ACM Trans. Comput. Syst (2007)

14. Ohsawa, Y., Sakauchi, M.: A New Tree Type Data Structure with Homogeneous
Nodes Suitable for a Very Large Spatial Database. In: Proc. of the Intl. Conf. on
Data Engineering (1990)

15. Querzoni, L.: Interest clustering techniques for efficient event routing in large-scale
settings. In: Intl. Conf. on Distributed Event-Based Systems (2008)

16. Riabov, A., Liu, Z., Wolf, J.L., Yu, P.S., Zhang, L.: Clustering Algorithms for
Content-Based Publication-Subscription Systems. In: ICDCS (2002)

17. Tariq, A., Koldehofe, B., Koch, G., Rothermel, K.: Providing probabilistic latency
bounds for dynamic publish/subscribe systems. In: Proceedings of the 16th ITG/GI
Conference on Kommunikation in Verteilten Systemen (KiVS). Springer, Heidel-
berg (2009)

18. The SpoVNet Consortium. Spontaneous Virtual Networks: On the road towards
the Internet’s Next Generation. it - Information Technology (2008)

19. Voulgaris, S., Rivire, E., Kermarrec, A.-M., van Steen, M.: Sub-2-sub: Self-
organizing content-based publish and subscribe for dynamic and large scale col-
laborative networks. In: Int’l Workshop on Peer-to-Peer Systems (2006)

20. Wang, J., Cao, J., Li, J., Wu, J.: Achieving Bounded Delay on Message Delivery
in Publish/Subscribe Systems. In: Intl. Conf. on Parallel Processing (2006)

